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Elliptic-Cylindrical Wavelets: The Mathieu Wavelets
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Abstract—This note introduces a new family of wavelets and a
multiresolution analysis that exploits the relationship between an-
alyzing filters and Floquet’s solution of Mathieu differential equa-
tions. The transfer function of both the detail and the smoothing
filter is related to the solution of a Mathieu equation of the odd
characteristic exponent. The number of notches of these filters can
be easily designed. Wavelets derived by this method have potential
application in the fields of optics and electromagnetism.

Index Terms—Floquet’s theorem, Mathieu equation, wave-
guides, wavelets.

I. INTRODUCTION

I N 1868, THE FRENCH mathematician É. L. Mathieu
introduced in his “Memoir on Vibrations of an Elliptic

Membrane” a family of differential equations that are nowa-
days termed Mathieu equations [1]. Mathieu’s equation is
related to the wave equation for the elliptic cylinder. Mathieu
is notably remembered for his discovery of sporadic simple
groups [2]. This letter is particularly concerned with the
canonical form of the Mathieu equation. For , , the
Mathieu equation is given by

(1)

The Mathieu equation is a linear second-order differential equa-
tion with periodic coefficients. This equation was shown later
to be also related to quantum mechanicals; the parameters
and denote the energy level and an intensity, respectively.
For , it reduces to the well-known harmonic oscillator,

being the square of the frequency [3]. The solution of (1) is
the elliptic-cylindrical harmonic, known as Mathieu functions.
In addition to being theoretically fascinating, Mathieu functions
are applicable to a wide variety of physical phenomena, e.g.,
diffraction, amplitude distortion, inverted pendulum, stability of
a floating body, radio frequency quadrupole, and vibration in a
medium with modulated density [4]. They have also long been
applied on a broad scope of waveguide problems involving el-
liptical geometry, including the following:

1) analysis for weak guiding for step index elliptical core
optical fibers [5];
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2) power transport of elliptical waveguides [6], [7];
3) evaluating radiated waves of elliptical horn antennas [8];
4) elliptical annular microstrip antennas with arbitrary ec-

centricity [9];
5) scattering by a coated strip [10].
The aim of this letter is to propose a new family of wavelets

based on Mathieu differential equations. Wavelets are a
well-known tool for differential equation solving [11]–[13].
However, in this work, we show another connection between
wavelets and differential equations: the design of new wavelets
from the solution of a differential equation.

II. MATHIEU EQUATIONS

In general, the solutions of (1) are not periodic. However, for
a given , periodic solutions exist for infinitely many special
values (eigenvalues) of . For several physically relevant solu-
tions, must be periodic of period or . It is also convenient
to distinguish even and odd periodic solutions, which are termed
Mathieu functions of the first kind. One of four simpler types
can be considered: periodic solution ( or ) symmetry (even
or odd). For , the only periodic solution corresponding
to any characteristic value or has the fol-
lowing notation.

Even periodic solution

ce for (2a)

Odd periodic solution

se for (2b)

where the sums are taken over even (respectively odd) values of
if the period of is (respectively ). Given , henceforth,

we denote by for short. Elliptic cosine and elliptic sine
functions are represented by ce and se, respectively. Interesting
relationships are found when , [14]

ce se (3)

One of the most powerful results of Mathieu’s functions is
Floquet’s theorem [15]. It states that periodic solutions of (1)
for any pair can be expressed in either of the forms

(4)

where is a constant depending on and , and is -peri-
odic in . The constant is called the characteristic exponent. If

is an integer, then and are linear dependent so-
lutions. Furthermore, or
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, for the solution or , respectively.
We assume that the pair is such that so
that the solution is bounded on the real axis [16]. The gen-
eral solution of Mathieu’s equation ( , noninteger) has
the form

(5)

where and are arbitrary constants.
All bounded solutions—those of fractional as well as integral

order—are described by an infinite series of harmonic oscilla-
tions whose amplitudes decrease with increasing frequency. In
the wavelet framework we are basically concerned with even
solutions of period . In such cases, there exist recurrence re-
lations among the coefficients [14]

odd (6)

In the sequel, wavelets are denoted by and scaling func-
tions by , with corresponding spectra and ,
respectively.

III. MATHIEU WAVELETS

Wavelet analysis has matured rapidly over the past years and
has been proved to be invaluable for scientists and engineers
[17]. Wavelet transforms have lately gained extensive applica-
tions in an amazing number of areas.1 The equation

, which is known as the dilation or re-
finement equation, is the chief relation determining a multires-
olution analysis (MRA) [18].

A. Two-Scale Relation of Scaling Function and Wavelet

Defining the spectrum of the smoothing filter by
, the central equations (in the

frequency domain) of an MRA are [19]

(7)

where is the transfer function of
the detail filter.

The orthogonality condition corresponds to [19]

(8a)

(8b)

(8c)

B. Filters of a Mathieu MRA

The subtle liaison between Mathieu’s theory and wavelets
was found by observing that the classical relationship

(9)

1A. Fournier, Wavelets and their applications in computer graphics. Course
notes from Proc. 1995 ACM Conf. Computer Graphics (SIGGRAPH ’95).
ftp://ftp.cs.ucb.ca/pub/local/bobl/wvlt.

presents a remarkable similarity to a Floquet’s solution of a
Mathieu’s equation, since is a periodic function.

As a first attempt, the relationship between the wavelet spec-
trum and the scaling function was put in the form

(10)

Here, on the second member, neither is an integer, nor
has a period . By an appropriate scaling of this equation, we
can rewrite it as

(11)

Defining a new function , we recog-
nize that it has a nice interpretation in the wavelet framework.
First, we recall that so that

. Therefore, the function related to Mathieu’s equa-
tion is exactly . Introducing a new variable ,
which is defined according to , it follows that

. The characteristic exponent
can be adjusted to a particular value

(12)

Defining now , where
, we figure out that the right side of the above

equation represents a Floquet’s solution of some differential
Mathieu equation. The function is -periodic, verifying
the initial condition , as expected.
The filter coefficients are all assumed to be real. Therefore, there
exist a set of parameters such that the auxiliary func-
tion

(13)

is a solution of the following Mathieu equation:

(14)

subject to and
, i.e, .

In order to investigate a suitable solution of (14), boundary
conditions are established for predetermined , . It turns out
that when is zero or an integer, belongs to the set of char-
acteristic values . Furthermore, is associated with

. The even ( -periodic) solution of such an equation is
given by

ce
ce

(15)

The function associated to and related to the detail
filter of a “Mathieu MRA” is thus

ce

ce
(16)
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Fig. 1. Magnitude of the transfer function for Mathieu multiresolution
analysis filters. (Solid line) Smoothing filter jH (!)j and (bold line) detail
filter jG (!)j for a few Mathieu parameters. (a) � = 3, q = 3, a =
9:915506290452134. (b) � = 5, q = 15, a = 31:957821252172874.

Finally, the transfer function of the detail filter of a Mathieu
wavelet is

ce

ce
(17)

The characteristic exponent should be chosen so as to guar-
antee suitable initial conditions, i.e., and

, which are compatible with wavelet filter requirements. There-
fore, must be odd. It is interesting to remark that the magnitude
of the above transfer function corresponds exactly to the mod-
ulus of a elliptic sine [16]

se

ce
(18)

The solution for the smoothing filter can be found out via
quadrature mirror filter bank conditions [18], yielding

ce

ce
(19)

In this case, we find and

ce

ce
(20)

Given , the even first-kind Mathieu function with characteristic
exponent is given by ce ,
in which ce . The and filter coeffi-
cients of a Mathieu MRA can be expressed in terms of the values

of the Mathieu function as

ce ce
(21)

It is straightforward to show that , . The
normalizing conditions are and

.

Fig. 2. FIR-based approximation of Mathieu wavelets as the number of
iteration increases (two, four, and six iterations, respectively). Filter coefficients
holding jhj < 10 were thrown away (19 retained coefficients per filter
in both cases). (a) Mathieu wavelet with � = 3 and q = 3 and (b) Mathieu
wavelet with � = 5 and q = 15.

IV. EXAMPLES

Illustrative examples of filter transfer functions for a Mathieu
MRA are shown in Fig. 1, for and 5, and a particular value
of (numerical solution obtained by five-order Runge–Kutta
method). The value of is adjusted to an eigenvalue in each
case, leading to a periodic solution. Such solutions present a
number of zeroes in the interval . We observe low-
pass behavior (for the filter ) and highpass behavior (for the
filter ), as expected. Mathieu wavelets can be derived from
the lowpass reconstruction filter by the cascade algorithm. In-
finite-impulse response filters (IIRs) should be applied, since
the Mathieu wavelet has no compact support. However, a fi-
nite-impulse response (FIR) approximation can be generated
by discarding negligible filter coefficients, say less than .
In Fig. 2, an emerging pattern that progressively looks like the
wavelet shape is shown for some couple of parameters and .
Waveforms were derived using the Matlab wavelet toolbox. As
with many wavelets, there is no nice analytical formula for de-
scribing Mathieu wavelets.

V. CONCLUSION

A new and wide family of elliptic-cylindrical wavelets was
introduced. It was shown that the transfer functions of the corre-
sponding multiresolution filters are related to Mathieu equation
solutions. The magnitude of the detail and smoothing filters cor-
responds to first-kind Mathieu functions with an odd character-
istic exponent. The number of zeroes of the highpass and
lowpass filters within the interval can be appro-
priately designed by choosing the characteristic exponent. This
seems to be the first connection found between Mathieu equa-
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tions and wavelet theory. It opens new perspectives on linking
wavelets and solutions of other differential equations (e.g., as-
sociated Legendre functions).

Although there exist plenty of potential applications for
Mathieu wavelets, none are presented: we just disseminate
the major ideas, letting further research be investigated. For
instance, this new family of wavelets could be an interesting
tool for analyzing optical fibers due to its “elliptical” symmetry.
They could as well be beneficial when examining molecular
dynamics of charged particles in electromagnetic traps such as
Paul trap or the mirror trap for neutral particles [20], [21].
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