THE RANDOM CODED MODULATION: PERFORMANCE AND EUCLIDEAN DISTANCE EVALUATION

H. Maghsoudi de Oliveira and C. Basilico,
TELECOM PAULI, Dept. CS, 111 rue Ramon, 75012 PARIS CEDEX 13, France

1 Bounds on the error probability

This paper is intended to apply Shannon's random coding argument [1] to coded modulation [2] to derive bounds on the error probability. We show that
\[P_e(M) \leq \sum_{d \geq 0} \sum_{\{|d|=d\}} N_d \epsilon^d, \]
where \(P_e(M) \) is the error probability of the M-dimensional (M-D) constellation with \(M \) equally likely signal points on an additive white Gaussian noise (AWGN) channel with receive signal-to-noise ratio \(S/N \). \(N_d \) is the number of points at a squared Euclidean distance of \(d \) from a given point in the coded or uncoded constellation.

Let us now consider the M-D uncoded constellation result from the Cartesian product of a constant-D constellation (of size \(q \) and minimum distance \(d_0 \)) with itself N times. We have \(\epsilon = P_e(M) \). To prove this, we use the error probability per 2-D symbol. From (2), we have \(N_d \) is the number of points at a squared Euclidean distance of \(d \) from a given point in the 2-D uncoded constellation.

Let us denote the distance spectrum of the uncoded and random coded modulations be \(D^u(M) = \sum_{d \geq 0} N_d \epsilon^d \) and \(D^r(M) = \sum_{d \geq 0} N_d \epsilon^d \), respectively. Assuming that the cross-dimensional random coding is the same as the uncoded unidimensional signal set results in \(\epsilon = \epsilon^d \). \(N_d^r(M) = q^{d/2} N_d(M) = \sum_{d \geq 0} n_d(M) \epsilon^d \) for \(d \geq 0 \). We have
\[\epsilon = \sum_{d \geq 0} n_d(M) \epsilon^d. \]

\[n_d(M) = \sum_{d \geq 0} n_d(M) \epsilon^d. \]

Asymptotic Behavior of Very Long Codes

Given an arbitrary \(\epsilon > 0 \), if we pick at random a particular coded (individually encoded) signal set with length \(N \), there is a good chance that the average squared Euclidean distance of the signal set will be larger than \(d_0 \). This is due to the statistical behavior of the signal set as \(N \) increases. As \(N \) becomes large, the average squared Euclidean distance tends to infinity. For \(\epsilon < 0.1 \), about 40 coded signal sets are needed to ensure that the average squared Euclidean distance of the signal set will be larger than \(d_0 \). If \(\epsilon = 0.1 \), about 100 coded signal sets are needed.

Concluding Remarks

We applied Shannon's random coding argument to coded modulation. Asymptotically, we found that the normalized squared Euclidean distance exhibits a limiting phenomenon. This means that the normalized distance does not increase with the number of signal sets as \(N \) becomes very large. However, this is not true for very small \(N \) values.

References

\[\sum_{d \geq 0} n_d(M) \epsilon^d = \sum_{d \geq 0} n_d(M) \epsilon^d. \]